

THIRD INTERNATIONAL CONFERENCE

SOFT COMPUTING AND SIGNAL PROCESSING (ICSCSP-2020)

Venue: Malla Reddy College of Engineering & Technology, Hyderabad, India.

Detecting Surface Cracks on Buildings using Computer Vision: An Experimental Comparison of Digital Image **Processing and Deep Learning**

Ramshankar Yadhunath, Srivenkata Srikanth, Arvind Sudheer, Jyotsna C,

Amudha J

A Skype or Video Conference Facility for those who are unable to travel due to COVID-19

21-22 August, 2020

AGENDA

RELEVANCE AND NEED FOR THE RESEARCH

What and Why is this research important?

THE RESEARCH METHODOLOGY

How did we go about our idea?

RESEARCH OUTCOMES

What were our results?

CONCLUSION AND FUTURE SCOPE

The path ahead

REFERENCES Some of the allied research that helped us

Relevance and Need for the Research What and Why is this research important?

DETECTING DEFECTS

Detect defects in buildings

TENANTS Will Need a Safe Home

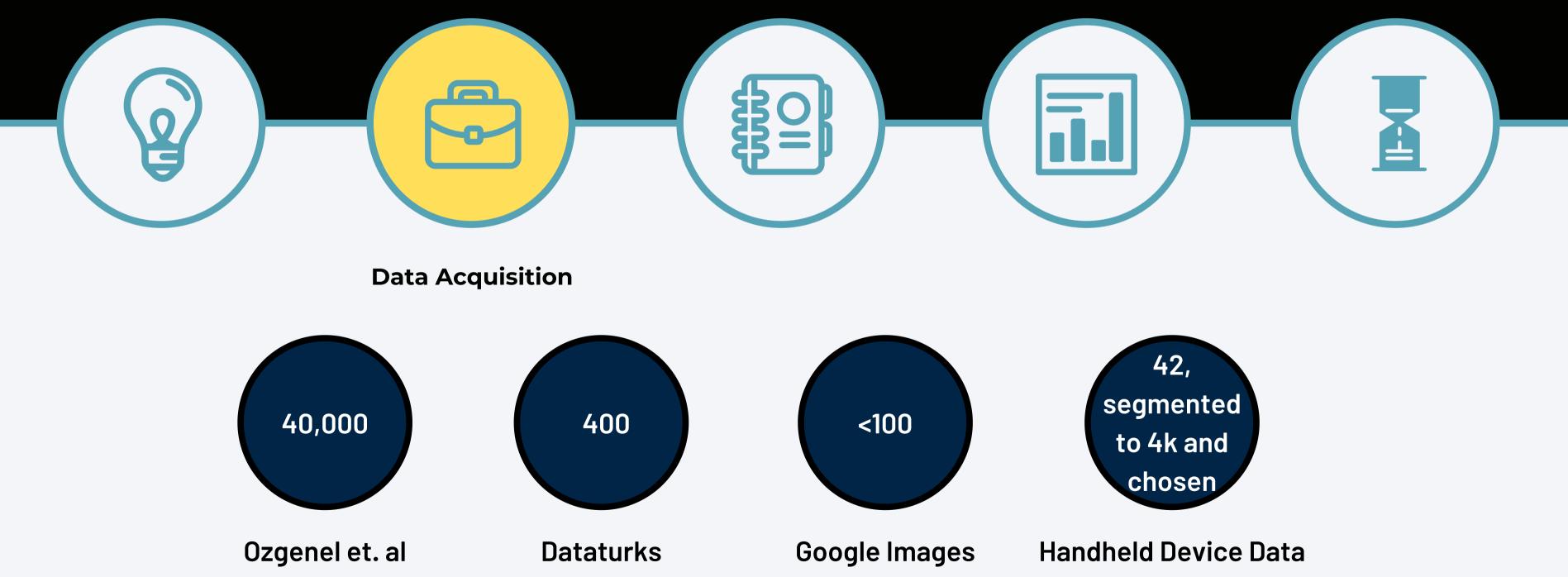
CONSTRUCTION COMPANIES Will Need to Establish Credibility

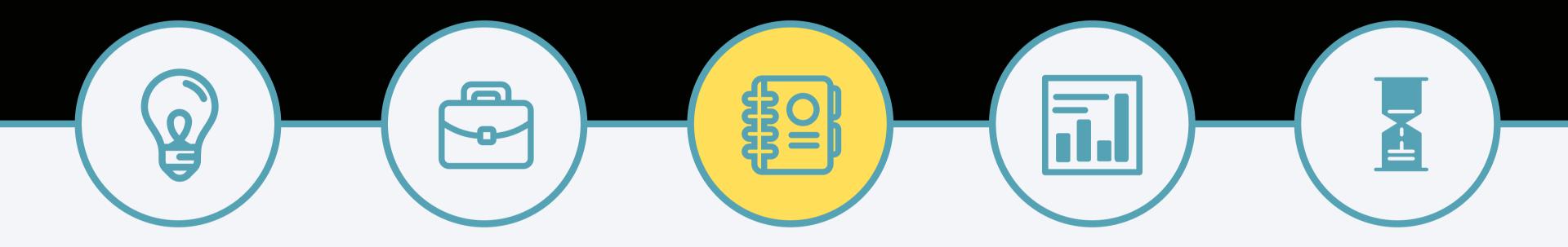
SAVE TIME

Reduce the need of manual inspection

Relevance and Need for the Research What and Why is this research important?

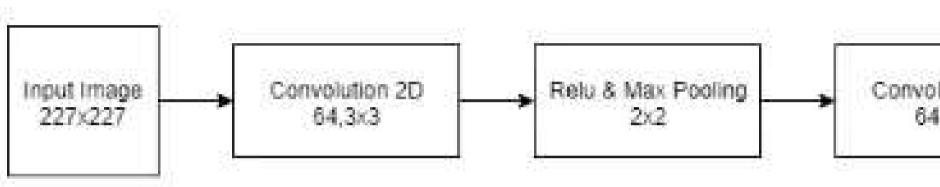
- 66 Much of the related work in this field does not account for the Condition of Generality i.e each experiment works with a specific set of data acquired with special setups.

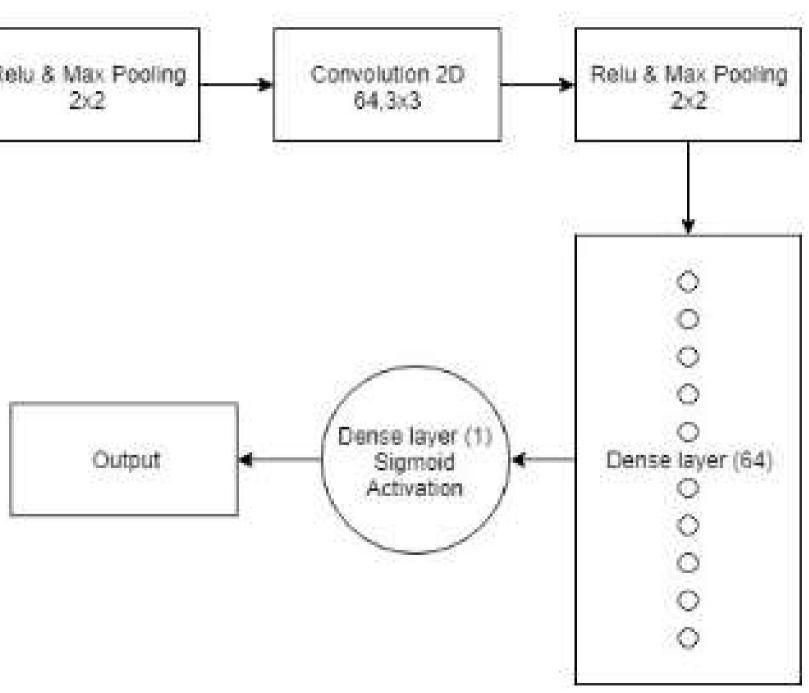



All Possible Datasets

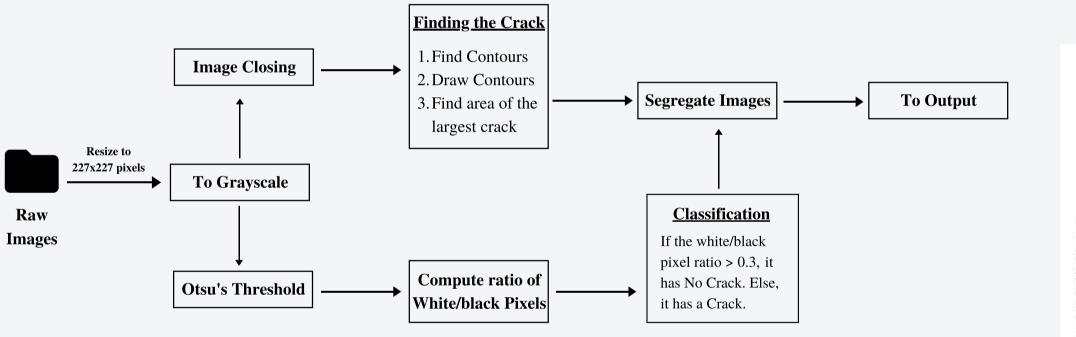
The Initial Ideation

- Domain Study
- Project Constraints
 - Time
 - Available Data
 - Cost

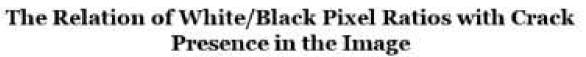



Building the Classifier

- Digital Image Processing-based Approach
 - Morphological Operations, Thresholding
 - Ratio of white/black pixels
- Deep Learning-based Approach • Convolutional Neural Network


Building the Classifier Deep Learning-based Approach

- Origin : Dataset 1
- Number of Images : 10,000
- Dimension of Images : 227 x 227 pixels
- Number of Epochs : 5
- Validation Split : 10%


Building the Classifier Digital Image Processing-based Approach

Low threshold

High threshold

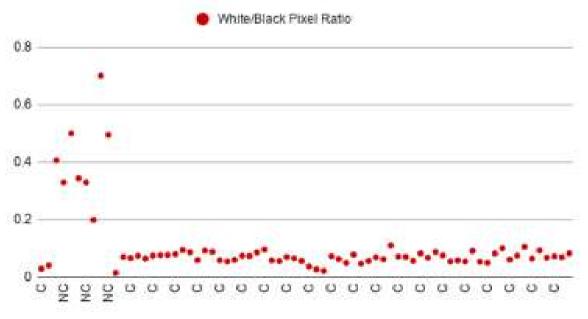


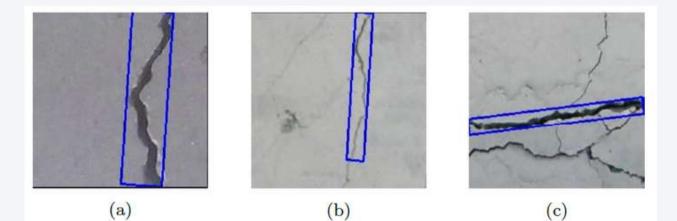
Fig 5.4 (All images not depicted in X-axis)

Based on 72 images in Dataset 2

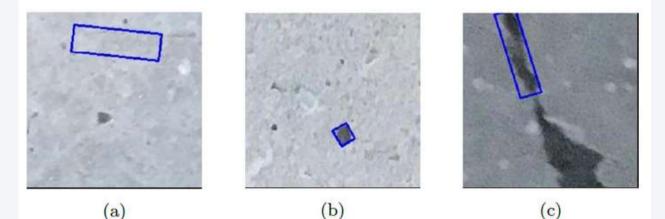
- Evaluation Metrics
 - Classification Accuracy
 - False Positive Percentage
 - False Negative Percentage

Evaluation

- Data stored at https://github.com/skth5199/Surface- **Cracks-Detection-Data**
- Language Used: Python 3.7
- Cloud Support for CNN: Kaggle kernels, Google Colab


Towards Implementation

Research Outcomes What were our results?


Table 1: DIP Method with Otsu Threshold Technique

Dataset	Number of Crack Images	Number of No Crack Images	Classification Accuracy	False Negative Percentage	False Positive Percentage
Dataset 1	500	500	90.2	1.79	17.8
Dataset 2	63	9	97.22	0	22.2
Dataset 3	27	5	100	0	0

- "Good" accuracy
- A pessimistic algorithm Higher FP%
- Common misses include
 - Mistaking stray marks and wires as cracks
 - Can't always find the widest crack

Research Outcomes What were our results?

Table 2: CNN Performance in Image Classification - No preprocessing

Dataset	Number of Images	Classification Accuracy
Dataset 1	1000	99.1
Dataset 3	31	100

- CNN was trained on 10,000 images from Dataset 1
- "Excellent" accuracy
- Common misses include
 - Can't judge what it has not seen before(Hence, dataset 2 with wires has been excluded)

Research Outcomes What were our results?

Table 4: Comparing performances on the evaluation dataset

Approach	Classification Accuracy
CNN - Without data preprocessing	33.5
CNN - With data preprocessing	49
DIP-based - With Otsu thresholding technique	93.22
DIP-based - With Adaptive thresholding technique	85.59

Fair Comparison?

The "No Free Lunch Theorem"

Evaluation Dataset (Dataset 4)

- 118 images (109 cracked, 9 no-crack)
- 227 x 227 pixels
- Sampled from 4k images (segmented
- from 42 images)
- Each image of 6 KB

CNN TRAINED

CNN SAW

Conclusion and Future Scope The path ahead

While DIP-based methods prefer good accuracy over great accuracy with only little or no data, deep learning-based methods can achieve great accuracy, but only if it is provided with enough data. In the event of building a system as one discussed in the paper, understanding this trade-off between a traditional approach and a state-of-the-art champion will help create a robust, safe and efficient system.

An important future scope of this work can be to identify methods to remove external noise in images like wires, windows etc.

References

Some of the allied research that helped us

- Pēteris Druķis, Līga Gaile, Leonīds Pakrastiņš, "Inspection of Public Buildings Based on Risk Assessment", Procedia Engineering, Volume 172, 2017, Pages 247–255, ISSN 1877–7058, https://doi.org/10.1016/j.proeng.2017.02.106. (http://www.sciencedirect.com/science/article/pii/S1877705817306124)
- Nama, Pooja, et al. "Study on causes of cracks & its preventive measures in concrete structures." International Journal of Engineering Research and Applications 5.5 (2015): 119–123.
- Ahzahar, N., et al. "A study of contribution factors to building failures and defects in construction industry." Procedia Engineering 20 (2011): 249–255.
- Sommerville, James. "Defects and rework in new build: an analysis of the phenomenon and drivers." Structural Survey 25.5 (2007): 391-407.
- symptoms and remedial work." European Journal of Technology and Design 1 (2014): 4–17. Survey, Vol. 28 No. 5, pp. 370–383, https://doi.org/10.1108/02630801011089164
- Bakri, Nurul Nadia Omar, and Md Azree Othuman Mydin. "General building defects: causes, • Georgiou, J. (2010), "Verification of a building defect classification system for housing", Structural